Информационное обеспечение при вождении поездов с применением технологии «виртуальная сцепка»: ключевые направления развития

А. А. Никонюк. начальник Центра исследований и подготовки комплексных научных проектов АО «НИИАС», аспирант Российского университета транспор*ma (РУТ (МИИТ))*,

М. А. Дежков, заместитель начальника департамента научных исследований, аналитики и совершенствования научно-технической деятельности АО «НИИАС», аспирант РУТ (МИИТ),

А. А. Суслов, заместитель генерального директора ООО «АВП Технология»

За счет модернизации бортовых технических средств безопасности, автоведения и связи удалось создать универсальную технологию, позволившую максимально сблизить поезда по интервалу, высвободив дополнительные нитки графика и решив проблему возрастающего объема перевозок без затрат на модернизацию устройств ЖАТ и строительство дополнительных главных путей.

2019 г. после утверждения планов правительства по модернизации железнодорожной инфраструктуры Восточного полигона для обеспечения вывоза грузов в направлении портов Дальнего Востока стало очевидно, что за установленные сроки невозможно реализовать это классическим методом строительством дополнительных путей.

Восточный полигон железных дорог ежегодно работает в условиях возрастающего объема перевозок грузов. ОАО «РЖД» системно реализует комплекс мероприятий по развитию пропускных способностей магистралей в направлении дальневосточных портов, в том числе за счет применения передовых технологий интервального регулирования движения поездов. Наиболее

широкое применение получила технология «виртуальная сцепка» (ВСЦ).

Благодаря новому радиомодему передачи данных М-ЛИНК и блоку-вычислителю КОВЧЕГ стало возможным связывать поезда на максимальном расстоянии друг от друга не более 8 км и просчитывать новые алгоритмы. Данная система включила в себя комплекс передовых бортовых технических средств и позволила максимально сблизить поезда по интервалу, тем самым высвободив дополнительные нитки графика.

Технология ВСЦ обеспечивает движение двух и более последовательно идущих поездов в режиме автоведения с учетом динамических свойств впереди идущего за счет организации постоян-

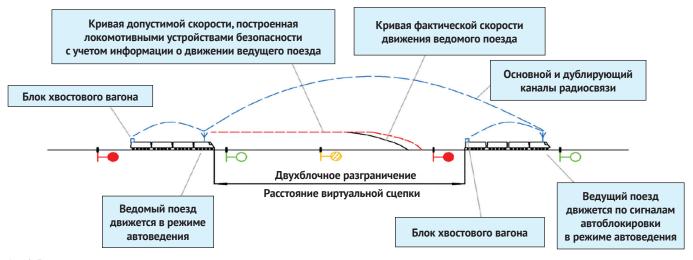


Рис. 1. Движение поездов по технологии «виртуальная сцепка»

Рис. 2. Сравнение возможных межпоездных интервалов при разных средствах интервального регулирования движения поездов

ного обмена информацией между локомотивами по радиоканалу. Ведомый локомотив, обрабатывая информацию с ведущего, выбирает наиболее оптимальный режим работы. При этом, основываясь на получаемой информации, проводится расчет времени момента изменения сигнала огня локомотивного светофора с желтого на зеленый или с красно-желтого на желтый, что позволяет соблюдать наименьшее безопасное расстояние между ведущим и ведомым поездами без применения торможения, не нарушая скоростей движения, установленных устройствами безопасности (рис. 1). Ведется учет эффективности тормозов как своего состава, так и виртуально сопряженного для расчета оптимальной траектории ведения поезда [1].

Существующая организация движения «под зеленый, на зеленый» основана на том, что между поездами сохраняется расстояние, равное трем блок-участкам. Так поезда могут следовать с постоянно разрешенной скоростью, если будет обеспечиваться синхронность движения.

В реальных условиях межпоездные интервалы постоянно колеблются. При движении поездов по технологии ВСЦ система рассчитывает движение поезда с максимальной точностью, недоступной даже опытному машинисту [2]. Интервал между виртуально соединенными поездами при движении в режиме автоведения составляет 6-8 мин. В случае ведения поезда машинистом вручную, даже имея на борту информацию о ведущем локомотиве, интервал увеличивается до 8–12 мин (рис. 2).

С 2019 г. началась подконтрольная эксплуатация технологии «виртуальная сцепка» на полигоне обращения в границах поездо-участков Карымская — Хабаровск II — Находка-Восточная Забайкальской и Дальневосточной железных дорог. В дальнейшем эта работа расширена: в 2022 г. — до станции Тайшет Восточно-Сибирской дороги, в 2023 г. — до станции Мариинск Красноярской дороги.

Данные анализа показывают, что с начала организации движения поездов по технологии ВСЦ на Восточном полигоне в 2019 г. пропущена 81 пара поездов, в 2020 г. — 614, в 2021 г. — 3600, в 2022 г. — 12 226, в 2023 г. — 35 863, а за 2024 г. организовано движение 75813 пар ВСЦ-поездов. Такой рост связан как с расширением полигона следования поездов по новой технологии, так и с доработкой ее информационного обеспечения, что позволило повысить результативность процесса управления пропуском поездов [3] (puc. 3).

Более подробно остановимся на информационном обеспечении процессов при движении поездов по технологии ВСЦ. Статистические данные о выполнении плана формирования, отправления поездов на ВСЦ направляются на сервер системы взаимодействия с локомотивом по технической радиосвязи в режиме реального времени. Данные с разбивкой по дорогам и станциям формирования не зависят от человеческого фактора и фор-

мируются в отчеты по значениям, полученным непосредственно с бортовых устройств локомотива, а также по данным, получаемых с серверов ОАО «РЖД».

Важную функцию выполняет отчет о техническом состоянии системы и локомотива. На его основании дежурный по станции и поездной диспетчер могут оценивать готовность локомотива к следованию с поездом по технологии «виртуальной сцепки», видеть режим ведения поезда, станцию формирования. Ремонтный персонал может получить более углубленные данные по каждому локомотиву для оценки технического состояния узлов системы ИСАВП-РТ-М¹ по каждой секции локомотива. Стоит отметить, что прием и передача данных происходит с использованием криптозащиты.

Для повышения результативности управления процессом пропуска поездов с использованием технологии «виртуальная сцепка» АО «НИИАС» в 2023 г. разработало и утвердило методические указания по формированию автоматизированных выходных форм для трехуровневой системы оперативного контроля и анализа движения грузовых поездов в режиме ВСЦ на Восточном полигоне. В документе описывается не только порядок расчета показателей и формирования выходных форм для всех уровней управления перевозочным процессом, но и алгоритм выявления фактов внепланового отключения режима «виртуальная сцепка» с автоматическим определением причин и ответственных служб (рис. 4).

Реализация данного алгоритма возможна при взаимодействии нескольких автоматизированных систем: Единой модели данных перевозочного процесса (ЕМД ПП), системы взаимодействия АСУЖТ² с локомотивом посредством систем цифровой радиосвязи, комплексной автоматизированной системы учета, расследования и анализа случаев технологических нарушений (КАСАТ) и комплексной автоматизированной системы

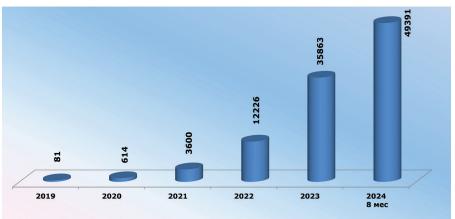


Рис. 3. Фактическое применение технологии интервального регулирования «виртуальная сцепка» на Восточном полигоне

¹ Интеллектуальная система автоматизированного вождения поездов повышенной массы и длины с распределенными по длине локомотивами

² Автоматизированная система управления железнодорожным транспортом.

АНАЛИЗ ПРОСЛЕДОВАНИЯ ПОЕЗДОВ ВСЦ НА СЕТИ РЖД**

за период ЧЧ.ММ.20ГГ - ЧЧ.ММ.20ГГ (период отчёта задаётся пользователем в пределам стата задаётся пользователем стата задаётся задаётся

	Отправлено ВСЦ			% использования			Просле		Межпоездной интервал					Случан разрыва ВСЦ												
дорога				автоведения				% проследования				%			Надёжность		д		T			цди				
	Beero	С ролью "Ведущий"	С ролью "Ведомый"	по времени	по пробегу	BCELO	в т.ч. более 60 км/ч	От всех светофоров	От проследований на "Ж"	Средняя скорость проследования "Ж"	Средний	Менее а мин*	От b до с минут*	Более d минут*	сети электросвязи	Beero	ляп	техн.	Увеличение межпоезди. интервала	Ненспр. локом	Разрын связи	Нарушен. техн. пропуска	Неисправи. инфраструкт уры	ние	Нарушен. техн. пропуска	прочее
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
**																										
ИТОГО по сети																										

- * пороговые значения межпоездного интервала в минутах a, b, c, d задаются пользователем (по умолчанию a=8, b=8, c=12, d=12)
 ** по выбору пользователя отчёт должен формироваться по всем дорогам, полигонам дорог, выбранным дорогам, дороге

Рис. 4. Форма отчета

учета, контроля устранения отказов технических средств и анализа их надежности (КАСАНТ).

Немаловажным остается вопрос дальнейшего развития технологии «виртуальная сцепка». Темпы роста объемов перевозок на сети железных дорог значительно опережают темпы обновления и модернизации инфраструктуры, в результате чего при существующей технологии управления движением поездов становятся практически исчерпанными пропускные и провозные способности железнодорожных магистралей, особенно в восточном направлении.

При постоянно возрастающих темпах загрузки инфраструктуры требуется увеличение объемов ремонтных работ. Так, например, на Забайкальской железной дороге продолжительность «окон», предоставленных для выполнения строительных и ремонтных работ, в 2023 г. увеличилась на 15% по сравнению с 2022 г. При этом в период проведения основного объема ремонтно-путевой кампании на инфраструктуре магистрали с июня по ноябрь 2023 г. выполнено 65% от годового количества поездок в режиме ВСЦ с увеличением в четыре раза к уровню 2022 г. Существенно повышен

Рис. 5. Организация движения поездов по технологии «виртуальная сцепка» в неправильном направлении в период проведения ремонтно-путевой кампании

коэффициент реализации потребных размеров движения, что подтверждено результатами этой технологии и отчетностатистическими данными ОАО «РЖД».

Одним из ключевых направлений в развитии технологии является движение поездов по неправильным железнодорожным путям. В 2023 г. разработан алгоритм следования поездов в режиме автоведения по технологии ВСЦ в неправильном направлении. Таким образом, особую практическую значимость имеет применение новой технологии при проведении «окон» по ремонту железнодорожных путей с закрытием одного из главных путей (рис. 5). В этом случае с использованием ВСЦ возможен пропуск грузовых поездов по одному из главных путей с сокращенными интервалами.

Следующим направлением дальнейшего развития технологии является увеличение количества поездов в пакете, соединенном в «виртуальную сцепку». В августе 2023 г. на Дальневосточной железной дороге организованы поездки с тремя локомотивами,

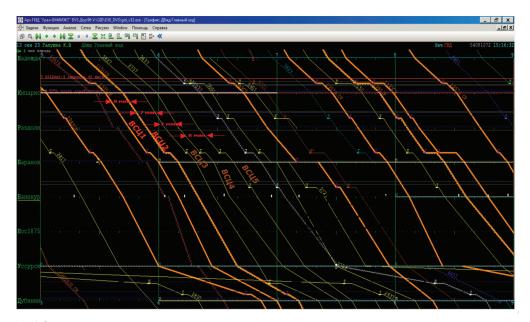


Рис. 6. Организация движения пакета из пяти поездов по технологии «виртуальная сцепка»

ВСЦ-1 поезд № 1375 индекс 9845-132-8523

ВСЦ-2 поезд № 1511 индекс 9845-532-8503

Участковая скорость

BCU-1 - 43.80

ВСЦ-2 - 43,92 ВСЦ-3 - 43,89

ВСЦ-4 - 44,01

ВСЦ-5 - 43,80

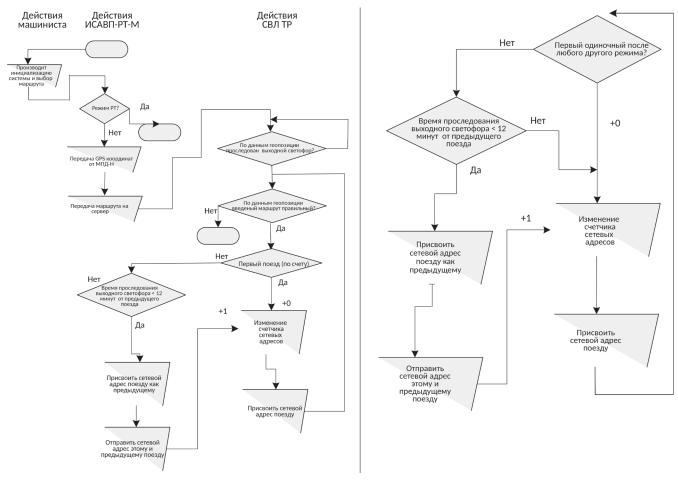


Рис. 7. Алгоритм автоматического объединения на станции отправления поездов в «виртуальную сцепку»

а 13-14 сентября 2023 г. по технологии ВСЦ на участке Смоляниново — Облучье ДВЖД впервые проведены пять составов с локомотивами ЗЭС5К (№ 1245, 1275, 1417, 1343 и 1364) общей массой 9892 т, которые проследовали более 1106 км, образуя минимальные интервалы в 5-7 мин при скорости движения до 78 км/ч (рис. 6).

Для облегчения работы поездного диспетчера и исключения ошибок локомотивных бригад при выборе режимов работы системы ИСАВП-РТ-М принято решение о реализации алгоритма автоматического объединения поездов, благодаря которому отсутствует необходимость в выдаче приказа на объединение в «виртуальную сцепку» от дежурного по станции и в дополнительных действиях локомотивной бригады (рис. 7).

На основании разработанного алгоритма передача информации о присвоении сетевого номера поезду осуществляется после проследования им выходного сигнала станции. Далее системой ИСАВПРТ-М передается информация об отправке сетевого номера как предыдущему поезду, так и проследовавшему выходной светофор станции с заданным интервалом.

В последние годы из-за переориентации грузопотоков к портам Дальнего Востока и быстрого исчерпания пропускной способности участков Транссибирской магистрали наблюдается тенденция к устойчивому росту потребности в использовании альтернативных способов доставки грузов в Приморский край и на пограничные пункты с Китаем. В складывающихся условиях все большее значение приобретает транзитная роль Байкало-Амурской магистрали как хода, параллельного Транссибу [4]. Соответственно для дальнейшего увеличения пропускной способности Восточного полигона возрастает необходимость внедрения организации движения поездов по технологии «виртуальная сцепка» на БАМе. На текущий момент технология организации движения виртуально соединенных поездов на электрифицированном участке Тайшет — Таксимо утверждена, но самого виртуального соединения поездов не происходит по причине малого обращения локомотивов, оснащенных системой автоведения, подходящих под виртуальное объединение на данном тяговом плече (рис. 8).

В соответствии с утвержденным технологическим процессом необходимым условием для реализации технологии является наличие на локомотиве системы автоведения поезда. В связи с этим из всех обращающихся на участке локомотивов, которые представлены сериями ВЛ80, ВЛ85 и 2(3) ЭС5К, для виртуального объединения подходят лишь последние, поскольку они оборудованы системой автоведения ИСАВП-РТ-М. На локомотивах других серий, которых в настоящее время на участке обращается значительное количество, система автоведения отсутствует. Таким образом, для полноценного использования данной технологии необходимо наращивание парка локомотивов серии 2(3) ЭС5К или более современных [5, 6].

Для организации движения по технологии ВСЦ на поездо-участках с автономным родом тяги потребуется оборудование тепловозов системой ИСАВП-РТ-М. Сейчас активно ведется ее разработка для двух типов тепловозов — 3ТЭ28 и 3ТЭ25К2М.

Следующим шагом в развитии технологии является вождение по ней пассажирских поездов. При этом очевидно, что в связи с закрытием аэропортов на юге и юго-западе России потребность в пе-

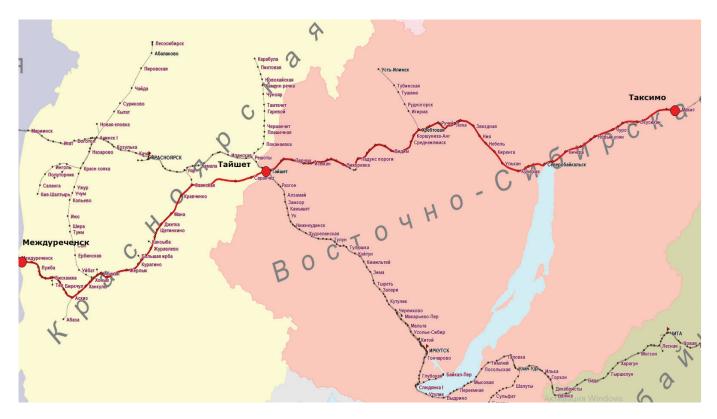


Рис. 8. Расширение полигона применения технологии «виртуальная сцепка» на участке Тайшет — Таксимо

ревозке пассажиров железнодорожным транспортом в данном направлении резко возросла.

В соответствии с задачами, поставленными президентом РФ, первый этап развития направления Центр — Юг определяется как возможность сокращения межпоездного интервала попутно следующих поездов за счет применения современных бортовых средств автоведения и связи. Одним из путей возможного увеличения пропускной способности участков южного направления является пропуск пассажирских поездов в пакетном графике за счет применения бортовых технических средств автоведения и связи.

Для решения этой задачи необходимо:

- провести имитационное моделирование работы железнодорожных станций и перегонов направления Центр — Юг для выявления данных об ограничивающих элементах инфраструктуры при прибытии, отправлении и проследовании технических станций пассажирских и грузовых поездов и технических предложений по развитию исследуемых станций и прилегающих перегонов для исключения или минимизации влияния барьерных мест на межпоездной интервал;
- построить график движения поездов с сокращенным межпоездным интервалом;

• разработать систему ИСАВП-РТ-М для самой массовой серии электровозов ЭП1М, курсирующих на данном направлении, в целях проведения испытаний, а в дальнейшем при получении положительных результатов в ходе экспериментальных поездок организовать разработку системы на другие серии электровозов, в частности, ЭП20, ЭП1, ЭП2к, ЧС7.

Проведение приемочных испытаний системы запланировано на 2025 г., а ее масштабное внедрение возможно начать уже в 2026 г. После массового тиражирования ИСАВП-РТ-М на пассажирские локомотивы появится возможность организации смешанного движения поездов по технологии «виртуальная сцепка» (пассажирских и грузовых), что увеличит маршрутную скорость движения поездов и ускорит доставку грузов в порты Дальнего Востока и центральные регионы страны.

Дальнейшее развитие информационного обеспечения процессов при вождении поездов с применением технологии «виртуальная сцепка» направлено на формирование точной информационной базы данных об участках эксплуатации электровозов, оснащенных системой автоведения, а также автоматизацию процесса планирования, что позволит повысить прозрачность и качество формируемых текущих планов поездной работы и предоставит возможность автоматически оценивать их выполнение.

Источники

- 1. Кобзев С. А. и др. Комплексная технология интервального регулирования движения поездов. М.: Издательские Технологии, 2022. 212 с.
- 2. Голочалов Н. С. Повышение пропускной способности железных дорог за счет совершенствования работы устройств автоматики и телемеханики: дис. ... канд. техн. наук. 2023. С. 18-24.
- 3. Долгий А.И., Сахаров А.Г., Дежков М.А. и др. «Виртуальная сцепка» на Восточном полигоне: достигнутые эффекты и направления развития // Транспорт Российской Федерации. 2023. № 5-6 (108-109). C. 15-19.
- 4. Макушин М. А., Бобровский Р. О., Демидова К.В. и др. Социально-экономическое развитие территорий в зоне влияния БАМ: советские планы и российские реалии // Географический вестник. 2023. № 2 (65). C. 12-25.
- 5. Никонюк А. А., Осипов А. П. Применение технологии «виртуальная сцепка» на участках Байкало-Амурской магистрали // Транспорт Российской Федерации. 2024. № 4. С. 11-14.
- 6. Лебедева Н.В., Левадный К.А., Федорова Н.Ю. Информационное обеспечение системы автоведения электровоза // Вестник ВЭлНИИ. 2010. № 1. С. 115-122.