Использование больших данных в сценарном анализе развития транспортного полигона Северо-Западного федерального округа

Н. А. Журавлева, д-р экон. наук, директор Института прикладной экономики и бухгалтерского учета железнодорожного транспорта, профессор кафедры «Экономика транспорта» Петербургского государственного университета путей сообщения Императора Александра I (ПГУПС),

И. Л. Сакович. канд. экон. наук, первый заместитель начальника Октябрьской железной дороги по экономике, финансам и корпоративной координации — филиала ОАО «РЖД»,

Е. В. Новикова, главный специалист отдела методологии бюджетирования и ценообразования управления экономики железнодорожного транспорта Института прикладной экономики и бухгалтерского учета железнодорожного транспорта ПГУПС

Проекты развития транспортной железнодорожной инфраструктуры должны быть реализованы под достоверно оцененные объемы перевозок. Меняющаяся геоэкономика изменила и продолжает менять структуру и объемы перевозимых грузов, что существенно затрудняет обоснование эффективности таких проектов. Большие данные и их сценарный анализ могут существенно усилить аргументацию транспортного развития полигонов железных дорог, обеспечивающих подходы к морским портам.

етодология сценарного анализа со времени своего появления (середины 1960-х гг.) стала неотъемлемой частью отраслевых и функциональных стратегических проектов. Ее основной смысл — получить обоснованные решения в различных вариантах развития событий с учетом оценки влияния на них рисков и неопрелеленности.

Именно эти варианты формируют сценарии, описываемые набором факторов, формирующих систему показателей, отражающих риски их вариаций в альтернативных направлениях развития ситуации. Это общий подход, применяемый в проектах различных масштабов (от международных до производственных или региональных), видов деятельности, отраслей и социальноэкономических процессов в целом [1].

При этом данная методология существенно усложняется, когда речь идет о проектах развития транспортнологистических систем. Основным фактором такого усложнения является структура комплекса перевозок, в основе которой лежит транспортная инфраструктура — железные и автомобильные дороги, морские порты, аэропорты. Любой значимый проект развития такой инфраструктуры предполагает существенные капитальные затраты, длительные сроки окупаемости и соответствующие расходы на эксплуатацию и обеспечение безопасности.

В этом контексте анализ проектов развития транспортной инфраструкту-

ры связан со сценариями существующих и будущих цепей поставок, формирующихся исходя из структуры и объемов сложившихся грузопотоков, изменений межотраслевых и межрегиональных товарных балансов. Существенное влияние на развитие сценариев цепей поставок оказывают процессы их цифровизации, а именно цифровые платформенные решения по управлению и оптимизации перевозок.

Аналитика структурированных данных в сценарном анализе грузопотоков добавляется аналитикой неструктурированных данных о поведении грузоотправителей, перевозчиков, операторов, владельцев инфраструктуры и других участников рынка грузовых перевозок. Цифровые платформы позволяют оценивать множество видов сценариев реализации цепи поставки: от «идеального» с минимальными операционными затратами до «реального в данный момент времени», учитывающего влияние факторов, ограничивающих перевозку (обходные маршруты, снижение скорости, рост тарифа и пр.).

С позиции грузовладельца (грузоотправителя) каждый разрабатываемый сценарий реализации цепи поставки формируется определенным набором факторов, определяющих вероятность его осуществления, зависящих от конфигурации маршрута, его модальности (смешанности перевозки разными видами транспорта), пропускной и провозной способности путей сообщения.

Для владельцев транспортной инфраструктуры (железных дорог, подъездных путей к морским портам, автодорог, портов и аэропортов) сценарный анализ должен предполагать наличие обосновывающих факторов прогнозов, заявляемых к перевозке структуры и объемов грузов. Иначе говоря, сценарии развития транспортной инфраструктуры должны учитывать сценарии развития мировой, региональной, страновой и отраслевой экономики, а также изменения в структуре и объемах международных торговых балансов.

В данном исследовании рассмотрены сценарии развития полигона Октябрьской железной дороги (ОЖД) как пространственной концентрации на территории Северо-Западного федерального округа транспортно-логистических центров, транспортных комплексов, крупных магистралей и морских портов [2].

Несмотря на региональный характер полигона ОЖД, его значимость для транспортной системы России и международных транспортных коридоров чрезвычайно высока. Железнодорожная и автомобильная инфраструктура обеспечивает здесь подходы к восьми международным погранпереходам, к семи морским портам, сухопутным передаточным пунктам, соединяя страны Европы, Южной и Средней Азии.

При этом в период с 2022 г. инфраструктурные проекты, планируемые к реализации (прежде всего железнодорожного транспорта), замерли в ожидании большей определенности по объемам и маршрутам грузовых перевозок. Много написано о влиянии геополитических и геоэкономических изменений последних лет на международные и региональные перевозки, отражение которых очевидно на данном транспортном полигоне. Изучена основная система факторов, определяющих вероятностные сценарии развития событий. Чаще всего авторы опираются на наборы структурированных данных, формирующих сценарные расчеты, и именно по ним строятся прогнозы изменения объемов перевозок [3].

Это данные статистических рядов прогнозируемых тенденций развития товарных рынков, обслуживаемых рассматриваемым полигоном (прогнозы производства и потребления), объемов предполагаемого транзита (в том числе по международным транспортным коридорам) и перевалки грузов в морских портах. Такая информация традиционно надежно обеспечивает процедуры формирования сценариев развития транспортной инфраструктуры в условиях устойчивых тенденций развития мировой и региональной экономики.

К сожалению, нынешняя ситуация на товарных рынках достаточно анормальна (флуктуативна), т. е. при определенных условиях изменения объемов, структуры грузов и маршрутов их перевозки могут вырасти до масштабов слома существующей транспортной системы и стать началом образования новой.

Разумеется, проекты развития транспортной инфраструктуры, как чрезвычайно капиталоемкие, не могут опираться исключительно на традиционные сценарные расчеты. Эта проблема широко обсуждается в научном сообществе [4, 5].

Следует проверять чувствительность показателей, оценивающих эффективность этих проектов (расширение «узких мест», строительство или модернизация объектов инфраструктуры, создание новых транспортный сетей и пр.), на рост эксплуатационных расходов по содержанию инфраструктуры, связанных с дефицитом оборудования, запасных частей, технологий и материалов, на отказ от перевозки в связи с ростом железнодорожных тарифов и пр. Добавляемые в анализ неструктурированные данные, в том числе «принудительные данные» в виде экспертных оценок, гипотез, предположений позволяют сформировать гипотезы новых конфигураций цепей поставок, усиливая достоверность сценарного анализа.

Вероятность этих гипотез может быть подтверждена данными о поведении всех участников рынка грузовых перевозок (не имеющими заранее заданной структуры или модели формирования). Именно с вводом в сценарные расчеты таких данных получены результаты исслелования.

Сценарный анализ эффективной реализации проектов развития железнодорожной инфраструктуры полигона Октябрьской железной дороги

Цель сценарного анализа — оценка объемов перевозок грузов на полигоне ОЖД на период до 2035 г., в том числе уточнение достижения целевых показателей по грузообороту в утвержденных правительством проектах развития, модернизации и расширения магистральной инфраструктуры, Стратегии социально-экономического развития России с низким уровнем выбросов пар-

никовых газов до 2050 г., Энергетической стратегии России на период до 2035 г., Транспортной стратегии Российской Федерации до 2030 г. с прогнозом на период до 2035 г., Федеральном проекте «Развитие железнодорожных подходов к морским портам Северо-Западного бассейна» и других нормативных документах.

Оценочные параметры такого сценария (при рассчитанных объемах капитальных затрат и эксплуатационных расходов проектов развития полигона) позволяют уточнить эффективность данных проектов и их окупаемость в различных вариантах развития событий, а также насколько текущая инфраструктура обеспечит вероятностные объемы перевозки.

Несмотря на то, что цели анализа по расчету чувствительности проектов соответствуют классическому решению оценки изменений в цепях поставок, сам анализ должен ответить на вопрос, что будет с загрузкой инфраструктуры, если события будут развиваться не так, как в обозначенных проектах [6]. Какие должны быть приняты решения с изменением приоритетов или конфигурации маршрутов не только с точки зрения экономического эффекта, но и с учетом сложности имплементации и организации перевозки?

Рассмотрены два прогнозных сценария перевозки (объемов и структуры) грузов на полигоне ОЖД, влияющих на будущее развитие его инфраструктуры: инерционный - развитие полигона соответствует заданным параметрам федеральных проектов развития транспортной инфраструктуры; целевой развитие транспортной инфраструктуры полигона учитывает прогнозы производства и потребления основных видов перевозимых грузов, формирующихся под влиянием геоэкономических и геополитических изменений на товарных рынках и цепях поставок. Целевая стратегия предполагает максимизацию использования всех факторов роста.

В качестве инструмента сценарного анализа использовано агентное моделирование - имитация поведения децентрализованных агентов с учетом неструктурированных данных об их вероятностных действиях в условиях роста рисков санкционных ограничений, инфляционных ожиданий, падения (роста) объемов производства, изменения структуры и объемов потребления и пр., их влияния на будущее состояние системы в целом. Данный метод апробирован и описан в научной литературе [7].

Архитектура больших данных, используемых в сценарном анализе

Основу сценарного анализа составляют:

1. Структурированные данные, отражающие динамику макроэкономических прогнозов и прогнозов развития основных компаний — производителей и потребителей основной номенклатуры перевозимых грузов (агрегированы по видам перевозимых грузов) (табл. 1).

Приведены структурированные данные о прогнозах развития производств агентов - компаний, производителей и потребителей грузов, перевозимых на полигоне Октябрьской железной дороги. Выборка произведена по принципу Парето (20% товаропроизводителей формируют 80% объемов перевозки). Исследована динамика статистических рядов прогнозов их развития с учетом стратегии, национальных проектов и программ/ проектов развития федерального и регионального значения в связи с прогнозными сценариями развития полигона ОЖД. Учтены такие факторы, как финансовоэкономические колебания конъюнктуры, санкции, углеводородная нейтральность стран-импортеров. Сформирована последовательность ряда исходных данных с определением их периодичности и стационарности. В данной статье данные обезличены и агрегированы по видам грузов.

2. Неструктурированные данные сценарного анализа.

Архитектура неструктурированных данных представлена многомерным измерением показателей, характеризующих состояние среды и перспективы развития производителей и потребителей грузов, перевозимых на полигоне (грузоотправителей)¹.

Первая группа показателей характеризует их инновационность (конкурентоспособность в прогнозируемом периоде). Математически отражается как степень, в которой траектория развития данной компании может поглощать инновации и развиваться в ответ на новые технологические, социальные, институциональные и организационные изменения, влияющие на долгосрочное качество роста.

Параметры инновационности связаны не только с технологиями, но и уровнем компетенций персонала (патенты, разработки и затраты на НИОКР, ноухау, способность их встраивать в новые цепочки создания стоимости). В лите-

Таблица 1. Структурированные данные о тенденциях социально-экономического развития РФ, энергетической и транспортной стратегий

Документ	Стратегии и направления развития, обозначенные в документе								
Стратегия социально- экономического развития России с низ- ким уровнем выбросов парни- ковых газов до 2050 г. (утв. распоряжением правительства от 29.10.2021 г. № 3052-р)	Сокращение экспор на период 2031–205 интенсивный сцена	50 гг.: инерц	ионный сцен	нарий» на 2,8	%;				
Энергетическая стратегия России на период до 2035 г. (утв. Распоряжением правительства от 09.06.2020 г. № 1523-р)	Рост объемов экспорта энергоресурсов в страны Азиатско-Тихоокеанского региона (АТР) к 2035 г.: • общий объем на 20%; • сырой нефти на 25%; • угля в 1,5 раза. Рост эффективности процессов переработки нефти: • снижение объемов нефти, направляемых на переработку, на 10 млн т за счет роста выхода светлых нефтепродуктов с 58,6 до 70–79%; • рост производства СПГ в 3–6 раз. Рост объемов экспорта угля в страны АТР за счет обеспечения транспортной доступности к новым центрам угледобычи								
Транспортная стратегия Российской Федерации до 2030 г. с прогнозом на период до 2035 г. (утв. распоряжением правительства от 27.11.2021 г. № 3363-р)	Объемы перевалки/экспорта через порты Северо-Запада, в % к 2022 г.	_	ативный» арий	«Базовый сценарий»					
		2025	2030	2025	2030				
	Нефть и нефте- продукты	97,1/ 96,4	92,4/ 90,7	101,1/ 101,2	102,8/ 103,3				
	Уголь/кокс	92,0/ 92,0	80,0/80,0	105,7/ 105,7	116,0/ 116,0				
	Черные металлы	107,7/- 107,7	121,5/ 121,5	107,7/ 200,0	121,5/ 364,7				
	Руда	120,8/ 119,1	166,7/ 159,6	129,4/ 129,4	194,1/ 194,1				
	Химические и минеральные удобрения	119,8/- 119,8	162,0/ 162,0	125,5/ 201,0	182,5/ 367,7				
	Прочие	107,1/ 107,5	119,8/ 121,5	107,1/ 107,5	119,8/ 121,1				
	Всего	103,6/ 104,0	109,8/ 111,1	106,2/ 107,0	117,3/ 119,6				
Флагманский отчет «О перспективах мировой энергетики до 2050 г.» (World Energy Outlook 2022) ¹	Сценарий «объявленной политики» (STEPS), отражающий политику ряда стран к энергопереходу и отказу от углеводородов. Сценарий «анонсированных обязательств» (APS), в котором учитываются все климатические обязательства стран. Сценарий «Чистый ноль выбросов к 2050 г.» (NZE2050), согласно которому заявленные страны выходят на нулевой баланса выбросов (Net Zero Emissions)								

Примечание: названия типов сценариев соответствуют приведенным документам. **Источник:** составлено авторами по данным из открытых источников.

 $^{^{\}rm I}$ В дальнейшем интерпретируются как факторы роста.

 $^{^1}$ World Energy Outlook 2022. URL: https://www.iea.org/reports/world-energy-outlook-2022 (дата обращения: 21.03.2025).

Таблица 2. Прогноз объемов перевозок грузов на полигоне ОЖД с учетом использования факторов роста

Dura mura	Горизонт прогнозирования, в % к 2023 г.								
Вид груза	2024	2025	2026	2027	2028	2029	2030		
Нефть и нефтепродукты	105,8	113,2	113,9	114,7	116,7	118,5	120,2		
Каменный уголь	104,5	108,9	109,4	110,2	111,8	113,1	114,4		
Химические и мин. удобрения	106,3	112,6	116,0	121,6	127,1	132,6	138,2		
Руда железная и марганцевая, цв. и серное сырье	102,1	104,3	106,3	109,1	112,0	114,8	117,6		
Строительные грузы	105,4	112,4	114,0	116,3	120,1	123,9	127,6		
Прочие	104,8	111,7	112,8	114,0	115,0	115,7	116,4		
Итого	105,0	110,9	112,4	114,5	117,1	119,6	122,0		

Источник: составлено авторами по данным из открытых источников.

ратуре описан процесс моделирования цифрового инжиниринга, как одного из элементов инновационности [8].

Вторая группа — инклюзивность. Она отражает степень, в которой траектория государственного регулирования и поддержки производителей включает все заинтересованные стороны в создаваемых им выгодах и возможностях для роста производства и потребления. Этот компонент оценивает результаты страны в таких областях, как участие в рабочей силе и образовании, доступ к услугам, включая жилье, транспорт и финансы, равенство в исследованиях и технологиях.

Третья группа связана с показателями устойчивого развития, определяя степень перехода к экологически чистым технологиям прежде всего странпотребителей топливно-энергетических ресурсов, преобладающих в структуре грузовых перевозок на полигоне. Понимая, что при текущих траекториях мир, скорее всего, не достигнет целей Парижского соглашения по глобальному потеплению, в прогнозах перевозок данных грузов следует учитывать национальные доктрины экологической нейтральности таких стран, как Китай, реализация которой может сократить в разы потребляемые объемы топлива. Однако, по сравнению с реагированием на отдельные риски, устойчивость подразумевает подготовку и адаптацию к таким системным рискам, которые охватывают всю экономику, что часто требует создания некоторого уровня избыточности и резервов.

Четвертая группа — самодостаточность как определенная форма устойчивости, способная уменьшить зависимость от импорта и укрепить внутренние экономические взаимосвязи. В контексте производства товаров и услуг это означает обеспечение разнообразия поставщиков, открытости логистических сетей и гибкости методов производства. Надежные цепочки создания стоимости и динамичные товарные сети являются эффективным средством повышения национальной устойчивости. Данные отражают уровень локализации производств товаропроизводителей.

Сценарный анализ архитектуры больших данных

Инструментом сценарного анализа является агентная модель ввоза и вывоза грузов на полигоне ОЖД на перспективу до 2030 г. Расчет проведен по двум вариантам стратегии: инерционному (соответствующему заданным параметрам федеральных проектов развития транспортной инфраструктуры полигона ОЖД) и целевому (формирующемуся под влиянием геоэкономических изменений). Он предполагает максимизацию использования всех факторов роста.

Применен следующий алгоритм обработки данных:

- Генерация совокупности данных по независимым агентам, существенно влияющим на объемы и структуру перевозимых грузов: инновационность, инклюзивность, устойчивое развитие и самодостаточность по следующей вы-
- физические агенты: грузоотправители, грузополучатели, экспедиторы, транспортные агенты;
- инфраструктурные агенты на полигоне ОЖД: железнодорожные подъездные пути, транспортно-логистические центры, морские порты;
- агенты-регуляторы: РФ, Северо-Западный федеральный округ.

Источники данных:

- устойчивые тенденции изменений международных и региональных цепей поставок (объемы и маршруты региональных перевозок и перевозок в международных транспортных коридорах);
- оперативная отчетность, данные информационных систем ОЖД;

• планы развития, прогнозы, отчетность грузоотправителей и грузополучателей.

Обработка данных: построение структурированных данных, их аналитика, прогноз показателей объемов перевозки грузов железнодорожным транспортом. Применение методов дифференциации, относительных единиц, интегрального, индексного, экономико-математического моделирования.

Использование многомерного подхода к обработке неструктурированных данных, который фокусируется на оценку качества роста бизнеса товаропроизводителя и баланс между различными приоритетами его развития, без агрегации в единый индекс.

Аппроксимация расчетных моделей на уровне от 0,7-0,99, что повышает достоверность сценарных прогнозов.

В табл. 2 приведены результаты анализа целевого сценария в части прогноза объемов перевозок грузов в целом по полигону ОЖД с учетом неструктурированных ланных.

Расчет объема перевозок не является достаточным для обоснования проектов развития инфраструктуры полигона. Тем же методом оценены следующие показатели:

- 1. Темпы роста по объему погрузки грузов — 123,95%, в том числе:
 - нефти и нефтепродуктов 118,54%,
 - каменного угля 113,33 %,
- химических и минеральных удобрений — 140,77%.
- 2. Темпы роста по объему выгрузки грузов — 121,08 %, в том числе:
 - нефти и нефтепродуктов 120,49%,
 - каменного угля 114,37%,
- химических и минеральных удобрений -136,46%.

Заключение

Сценарный анализ, основной сутью которого является проверка гипотез,

Экономика и финансы

обосновывающих принятие сложнейших финансовых, технических, организационных и управленческих решений по развитию транспортной инфраструктуры, является важнейшим инструментом поиска решения, наиболее близкого к оптимальному и имеющего выраженные преимущества.

В данном контексте основной проблемой является оптимальная архитектура неструктурированных данных, обосновывающих рост (падение) бизнеса товаропроизводителей: их избыточность (недостаток) и достоверность. Ряд неструктурированных данных практически невозможно оцифровать и учесть в модели, например, плохой менеджмент в компании, коррупция, теневая экономика бизнеса и пр.

По этим причинам дальнейшие исследования в части проверки гипотез будут связаны с разработкой дорожной карты поэтапных изменений в каждой группе данных: инновационность, инклюзивность, устойчивое развитие и самодостаточность, по-разному реализуемых и влияющих на экономический эффект транспортных проектов.

Источники

- 1. Ковалев П. П. Сценарный анализ, методологические аспекты // Финансы и кредит. 2009. № 44 (380). С. 9-13. EDN: KWWVVD.
- 2. Рослякова Н. А. Исследование транспортных полигонов РФ // Друкеровский вестник. 2014. № 4(4). С. 86-95. EDN TJVSGB.
- 3. Зимовец А. В., Климачев Т. Д. Анализ и оценка сценариев социальноэкономического развития России в условиях санкционной блокады и непредсказуемости глобальных трендов мировой экономики // Экономические отношения. 2023. Т.13. № 1. С.181-202. DOI: 10.18334/eo.13.1.117207.
- 4. Сценарный анализ методы и примеры прогнозирования. URL: https:// www.1cbit.ru/blog/stsenarnyy-analizmetody-i-primery-prognozirovaniya /?ysclid=m3x0619tir762756529&u tm referrer=https%3A%2F%2Fyandex.

- ru%2F (дата обращения: 25.12.2024).
- 5. Димитриади Н. А., Иванова Е. А., Левина Ю. В., Щепилов О. И. Сценарный анализ в стратегическом управлении современным бизнесом. М.: Первое экономическое издательство, 2023. 224 c. DOI: 10.18334/9785912924705
- 6. Темников А. Планирование в условиях рисков и неопределенности: Сценарный анализ. URL: https://lamacon. ru/blog/scenarny-analiz?ysclid=m3mg uzuc4d189610401 (дата обращения: 25.11.2024).
- 7. Макаров В. Л., Бахтизин А. Р., Сушко Е. Д. Агент-ориентированное моделирование больших социальноэкономических систем на основе общей теории функциональных систем П. К. Анохина // Искусственные общества. 2022. Т. 17. № 3. DOI: 10.18254/ S207751800021924-5.
- 8. Красюк Т. Н. Трансформация стратегических моделей в контексте развития трансграничных цифровых экосистем // Менеджмент в России и за рубежом. 2024. № 2. C. 11-19. EDN: AAVHPW.

Общероссийская общественная организация

РОССИЙСКАЯ АКАДЕМИЯ ТРАНСПОРТА

Академия включает 48 РЕГИОНАЛЬНЫХ ОТДЕЛЕНИЙ

ДАТА ОСНОВАНИЯ РОССИЙСКОЙ АКАДЕМИИ ТРАНСПОРТА:

26 июня 1991 года

Президент Академии: АЛЕКСАНДР СЕРГЕЕВИЧ МИШАРИН

СОСТАВ АКАДЕМИИ В 2023 ГОДУ

> 680 УЧЕНЫХ-ТРАНСПОРТНИКОВ:

170 ДОКТОРОВ НАУК

510 КАНДИДАТОВ НАУК

260 ПОЧЕТНЫХ ЧЛЕНОВ РАТ

