Preview

Transport of the Russian Federation

Advanced search

Application of discrete track model in the problems of the rail vehicles

Abstract

In order to study the rail vehicle dynamics considering the application of discrete track model the linear one-axle model with three degrees of freedom corresponding to the fouraxle vehicle is considered. Using D’Alembert’s principle and the principle of virtual power, differential equations of vertical oscillations of the track and the wheelset, the sprung mass of the bogie and body are derived, the oscillation frequencies are found, and the amplitude and phase frequency characteristics connecting the oscillations of the specified masses with the kinematic disturbance are developed. The results of calculations show that the proposed model of vehicle—track interaction permits distinguishing oscillations at frequencies greater than 10 Hz, so in such problems it is necessary to set the disturbance spectrum corresponding to the frequency range of 10 to 100 Hz. Oscillations appearing at frequencies greater than 10 Hz are of great importance in the study of oscillations of freight wagons without axle box guide, as well as in the study of torsional oscillations in locomotive traction gears.

About the Authors

A. N. Savos’kin
Russian University of Transport (RUT MIIT)
Russian Federation

Anatolii N. Savos’kin, Dr. Sc. Eng., professor of the department, Electric Trains and Locomotives



A. P. Vasil’ev
Russian University of Transport (RUT MIIT)
Russian Federation

Andrei P. Vasil’ev, Cand. Sc. Eng., associate professor of the department, Electric Trains and Locomotives



G. P. Burchak
Russian University of Transport (RUT MIIT)
Russian Federation

Genrikh P. Burchak, Cand. Sc. Eng., professor of the department, Theoretical Mechanics



References

1. Бирюков, И. В. Механическая часть тягового подвижного состава: учебник для вузов ж.-д. транспорта / И. В. Бирюков, А. Н. Савоськин, Г. П. Бурчак и др.; под ред. И. В. Бирюкова // — М.: Транспорт, 1992. — 440 с. Репринт. воспроизв. — М.: Альянс, 2013. — 440 с.

2. Savoskin, A.N.Mechano-mathematical models of railway rolling stock spring suspension elastic–friction elements / A.N. Savoskin, A. P. Vasilev // Proceedings of the 6th International Conference on Industrial Engineering. ICIE2020. Lecture Notes in Mechanical Engineering / еds: A. A. Radionov, V. R. Gasiyarov. — Cham: Springer, 2020. — Р. 703–710. — http://doi.org/10.1007/978–3–030–54814–8_81

3. Вериго, М. Ф. Взаимодействие пути и подвижного состава / М. Ф. Вериго, А. Я. Коган. — М.: Транспорт, 1986. — 559 с.

4. Коган, А. Я. Динамика пути и его взаимодействие с подвижным составом / А. Я. Коган. — М.: Транспорт, 1997. — 326 с.

5. Коган, А. Я. Случайные процессы взаимодействия пути и подвижного состава / А. Я. Коган, Э. Д. Загитов, И. В. Полещук // Вестник ВНИИЖТ. — 2016. — Т. 75. — № 4. — С. 195–200. — http://doi.org/10.21780/2223–9731–2016–75–4–195–200

6. Belotserkovsky, P. M. High-frequency vibrations due to interaction between wheel-sets via corrugated rails / P. M. Belotserkovsky // Proceedings of the 8th International Conference on Structural Dynamics. EURODYN2011 / еds: G. De Roeck, G. Degrande, G. Lombaert, G. Muller. — Leuven, Belgium, 2011. — URL: https://bwk.kuleuven.be/apps/bwm/eurodyn2011/papers/MS04–986.pdf (дата обращения 14 марта 2022 г.)

7. Belotserkovsky, P. M. Interaction between a railway track and uniformly moving tandem wheels / P. M. Belotserkovsky // Journal of Sound and Vibration. — 2006. — Vol. 298. — N4–5. — Р. 855–876. — http://doi.org/10.1016/j.jsv.2006.03.054

8. Mikheev, G. Methods of Simulation of Railway Wheelset Dynamics taking into account Elasticity / G. Mikheev, D. Pogorelov, A. Rodikov // Proceedings of First International Conference on Rail Transportation, July 10–12, 2017. — Chengdu, China. — URL: https://pdfslide.net/documents/methods-of-simulation-of-railwaywheelset-dynamics-of-simulation-of-railway (дата обращения 16 июня 2022 г.)

9. Rodikov, A. Computer simulation of train-track-bridge interaction / A. Rodikov, D. Pogorelov, G. Mikheev, R. Kovalev, Q. Lei, Y. Wang // Proceedings of International conference on railway excellence (CORE2016: Maintaining the Momentum). — Melbourne, Australia, 2016. — 348 р.

10. Sheng, X. Simulations of roughness initiation and growth on railway rails / X. Sheng, D. J. Thompson, C. J. C. Jones, G. Xie, S. D. Iwnicki, P. Allen, S. S. Hsu // Journal of Sound and Vibration. — 2006. — Vol. 293. — Iss. 3–5. — Р. 819–829. — http://doi.org/10.1016/j.jsv.2005.08.050

11. Jin, X. S. Three-dimensional train–track model for study of rail corrugation / X. S. Jin, Z. F. Wen, K. Y. Wang, Z. R. Zhou, Q. Y. Liu, C. H. Li // Journal of Sound and Vibration. — 2006. — Vol. 293. — Iss. 3–5. Р. 830–855. —http://doi.org/10.1016/J.JSV.2005.12.013

12. Xiaolong, Liu. An indirect method for rail corrugation measurement based on numerical models and wavelet packet decomposition / Liu Xiaolong, Han Jian, Xu Hanwen, Xiao Xinbiao, Wen Zefeng, Liang Shulin // Measurement. Elsevier. — 2022. — http://doi.org/10.1016/j.measurement.2022.110726

13. Xiaogang, Liu. Investigation of the generation mechanism of rail corrugation based on friction induced torsional vibration / Liu Xiaogang, Wang Peng // Wear. — 2021. — Vol. 468–469. — http://doi.org/10.1016/j.wear.2020.203593

14. Chaozhi, Ma. The dynamic resonance under multiple flexible wheelsetrail interactions and its influence on rail corrugation for high-speed railway / Ma Chaozhi, Gao Liang, Xin Tao, Cai Xiaopei, Nadakatti Mahantesh M., Wang Pu // Journal of Sound and Vibration. — 2021. — Vol. 498. — http://doi.org/10.1016/j.jsv.2021.115968

15. Xiaolu, Cui. Field investigation and numerical study of the rail corrugation caused by frictional self-excited vibration / Cui Xiaolu, Chen Guangxiong, Zhao Jiangwei, Yan Wenyi, Ouyang Huajiang, Zhu Minhao // Wear. — 2017. — Vol. 376–377. — Pt B. Р. 1919–1929. — http://doi.org/10.1016/j.wear.2017.01.089

16. Певзнер, В.О. Влияние длинных неровностей продольного профиля на безопасность движения в условиях интенсификации перевозочного процесса / В. О. Певзнер, А. И. Чечельницкий, К. В. Шапетько, Е. А. Сидорова, А. Ю. Сластенин // Вестник ВНИИЖТ. — 2020. — Т. 79. — № 5. — С. 271–275. — http://doi.org/10.21780/2223–9731–2020–79–5–271–275

17. Руководящий документ ПР 32.68–96. Расчетные неровности железнодорожного пути для использования при исследованиях и проектировании пассажирских и грузовых вагонов. — Указание № А-11у об утверждении и введении в действие. — М.: Министерство путей сообщения Российской Федерации, 1997 г. — 21 с.


Review

For citations:


Savos’kin A.N., Vasil’ev A.P., Burchak G.P. Application of discrete track model in the problems of the rail vehicles. Transport of the Russian Federation. 2022;(3):33-36. (In Russ.)

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1994-831Х (Print)
ISSN 2658-3674 (Online)